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Abstract - Passive data is powerful but still faces many challenges to gain trust as a way to 
understand people’s online behaviors. One major challenge is separating the data from several 
individuals sharing one single browsing device. Existing solutions to overcome this difficulty are 
clearly unsatisfactory. A new method to separate navigation data without asking users, 
preserving the passive nature of the data, is explored in this paper. 

  



 

 

INTRODUCTION 

Data fuels market research; insight generation is impossible without relevant and 
appropriate data to support it. Fortunately, we are seeing tremendous growth in the 
amount of new sources and the diversity of data available for research, at a low cost 
that used to be unimaginable. 

Any technological disruption is as much an opportunity as it is a challenge, no matter 
the field we are talking about. The market research industry is experiencing a major 
disruption, and it is no exception to this rule. 

For many years, the number of ways of accessing consumer data was limited and 
stable. With the advent of the internet, researchers started to adopt this new channel 
to access potential respondents. It was at the beginning of this century and, since then, 
things have rapidly evolved. In developed markets, most of the data is collected by 
means of online access panels (ESOMAR, 2016; Baker et al., 2013; Lozar-Manfreda & 
Vehovar, 2008). 

However, despite this considerable progress in the way consumers are accessed, the 
nature of the collected data has not evolved at the same pace. Offline surveys are 
increasingly replaced by online surveys; traditional focus groups sometimes are 
replaced by online focus groups; and the same may be said of many other traditional 
methods. In other words, the internet has made data collection more cost efficient and 
fast, but not radically different. At least, up to now. 

After nearly 15 years, it is only now that we are witnessing a real revolution in the way 
researchers use the internet, motivated by several factors: widespread adoption of the 
social media, irruption of the mobile internet and consolidation of e-commerce, 
among others. And, of course, the learning curve of the internet adoption has been got 
ahead. As a result, new data types are now available and new methodologies are being 
developed on top of them. 

Passive online data collection has emerged as one of the most promising 
groundbreaking methodologies. One of its most powerful variants is the installation of 
an online meter on the browsing devices of members of an online access panel to 
record information on their online behaviors (visited websites, apps usage, search 
terms), as well as their opinions (via survey). 

Passive data has proved to have an edge over survey data when researching online 
behaviors, overcoming (1) human memory limitations and (2) lack of sincerity (Revilla, 
Ochoa, Loewe and Voorend, 2015). However, passive online data collection still faces 
several challenges that prevent broader adoption. First, the large amount of data 
generated per individual makes the analysis complex; additionally, some of the uses 
being given to such data requires new analytical methods, as the traditional are facing 
significant constraints. Second, individual navigation may be spread across different 



 

 

devices (smartphone, tablet, personal PC, professional PC…) which would require 
installing a meter in all the individual’s devices to get the full picture. Finally, some 
browsing devices are shared among several users, preventing to know for certain 
which browsing information comes from each one. 

This latter issue produces serious discomfort to researchers, as it is an objective 
distortion of the data. Existing solutions do not enjoy widespread support due to 
several drawbacks: reduced representativeness, increased measurement error or lack 
of transparency on how they work. In fact, some solutions may be worse than the 
problem they try to solve. 

This paper presents a completely new approach to overcome the user identification 
problem: separating individual’s navigation by means of an algorithm that just looks at 
the data. As it will be shown, succeeding in doing so is only possible if browsing 
information is a personal trait, something unique that unequivocally identifies each 
individual the same way a fingerprint does (PII). 

This paper is organized in several sections: 

In section I, information on the data used to carry out this research is shared. 

In section II, existing solutions and their limitations are reviewed. 

In section III, the key hypothesis that must be valid to make our purpose possible is 
detailed (i.e. the way each individual browses the internet is unique), as well as some 
data supporting it. 

Section IV provides a detailed description of the proposed algorithm, while section V 
shares its results. 

In section VI we will explore how some limitations of this solution could be overcome, 
suggesting further research to improve results. 

SECTION I. THE DATA 

Data source 

We use data from the Netquest’s Behavioral Panel in US, UK and Spain. The final 
algorithm was trained on data from the Spanish panel, as it has been recording 
behavioral data for a longer period of time. 

These behavioral panels are built on top of existing online access panels, so online 
behavioral and survey data can be collected from the same sample of individuals. To 
do so, a subsample of the access panel is invited to install tracking software (from now 
on called the "meter") on their browsing devices (PCs, tablets and smartphones). The 
meter collects data on the individuals’ online activity, such as URLs of the visited 
webpages, time of the visits, and app use in the case of mobile devices. 



 

 

As all the metered panelists are also members of the survey panel, their basic 
sociodemographic information is known as well as some profiling data on different 
topics (e.g. automotive, healthcare, FMCG, etc.). When regular panelists are invited to 
install the meter, they are asked to complete an installation survey that asks how 
many devices they use to browse the internet and, for each device, (1) type of device, 
(2) main use of the device (personal/professional) and (3) whether it is shared or not. 
Panelists can install the meter in all their devices and they are rewarded for each one 
(up to three different devices). However, they are not obliged to track all their devices. 

We are interested in panelists that have installed the meter in a shared PC or tablet. 
Although mobile devices can be shared occasionally, they are mainly single-person 
devices. 

Definitions 

Behavioral data produced by a meter is a record of visited webpages, like the one 
shown in figure I. 

Start data and time Webpage URL 
2016-03-04 T19:04:48 http://www.google.com 
2016-03-04 T19:04:56 https://www.google.com/search? q=bestsellers+2017 
2016-03-04 T19:05:25 https://www.amazon.com/ 
2016-03-04 T19:05:42 https://www.amazon.com/gp/site-directory 
2016-03-04 T19:05:58 https://www.amazon.com/books-used-books-textbooks/b/ 
…  

Figure I. An example of the behavioral data collected by a meter, also known as clickstream. 
Data has been simplified: additional metadata is also recorded, such as device type, user id, 

etc. 

For the sake of clarity, we define here two key words that will be used throughout this 
paper. 

Webpage/URL: A webpage is a particular file on the Internet that can be accessed by 
an individual through a browser. A webpage is described by a URL, an address that 
univocally identifies a webpage (www.amazon.com/help/display.html). The terms 
webpage and URL will be used interchangeably from now on. 

Website/Domain: A website is a connected group of webpages regarded as a single 
entity, under the same domain name. So, https://www.amazon.com/gp/site-directory 
and https://www.amazon.com/books-used-books-textbooks/b/, are two webpages 
under the same website, described by the domain name amazon.com. The terms 
website and domain will be used interchangeably from now on. 

The dataset 

We have data available from our target group (shared PCs and tablets). However, we 
cannot produce a validation dataset to train and test an algorithm. For our purpose, a 



 

 

validation dataset would be a collection of visited webpages from a shared device, 
each webpage properly labelled as belonging to the right user. Without a validation 
dataset, it is not possible to measure how accurately an algorithm separates 
navigations. 

This is precisely one of the main obstacles of this work: the lack of a validation dataset. 
In order to get one, we should rely on some of the already existing methods to 
separate navigations; however, those methods’ accuracy is under suspicion. 

To overcome this difficulty, an artificial validation dataset was used. It was built by 
mixing two individual’s navigations from non-shared devices, as if both individuals 
were sharing the same device. Knowing who is the real author of each webpage visit, 
allows us to use this dataset to measure how well a classification algorithm performs in 
identifying the right user. 

In particular, the artificial dataset used to test the algorithm was built by a two-stage 
sampling process: 

• Stage 1: a random sample of N=200 individuals was drawn from the Spanish 
Behavioral Panel.  

• Stage 2: 1,000 couples of navigations were mixed by randomly selecting 
couples of panelists from the initial sample. 

This approach limits the validity of the results that have been obtained: 

• Two real users sharing the same device might have navigations more similar 
than two random users selected from the panel. In other words, this work aims 
to contribute to solving the shared devices issue by proving that two 
independent user’s navigations can be separated; the next step will be to test 
this solution on two navigations coming from the same device. 

• We have focused our research on separating two navigations, while a browsing 
device might be shared by three or more individuals. 

In the final section, some considerations will be shared on how these limitations could 
be overcome. 

Sessions 

The algorithm described in section IV uses the concept of browsing session. A session is 
defined as a group of successive webpage visits, in a way that the time lapse between 
consecutive visits is shorter than a timeout parameter. 

As will be detailed later, the classification algorithm assumes that all the visits within a 
session belong to the same user.  This information is key for the accuracy of the 
output. So, the timeout (time difference to consider a new session) is a tuning 
parameter of the model and not an intrinsic feature of the data; that is, we need to 



 

 

define the timeout in the most convenient way to maximize the accuracy of the 
algorithm. 

Tuning parameters such as the timeout can be adjusted using different solutions: “A 
general approach that can be applied to almost any model is to define a set of 
candidate values, generate reliable estimates of model utility across the candidates’ 
values, then choose the optimal settings.” (Kuhn and Johnson, 2010). 

The parameter tuning process should be part of the algorithm creation. The optimal 
timeout value: (1) places as many webpage visits in the same session as possible, but 
(2) limiting the risk of grouping together visits from different users. This could be called 
the information-precision trade-off. 

However, we cannot find the optimal timeout through our artificial data. Our dataset is 
made up from pairs of independent navigations mixed together, so it does not provide 
relevant information to find the right balance in the information-precision trade-off. 

In view of that fact, we decided to use a timeout of 30 minutes, following a standard 
used by popular analytical tools such as Google Analytics 
(https://support.google.com/analytics/answer/2731565). The resulting sessions were 
manually inspected, ensuring that the division of the webpage visits among sessions 
made sense. 

SECTION II. EXISTING SOLUTIONS 

To our knowledge, three main solutions have been proposed to overcome the shared 
device issue. 

The first solution is to limit the data collection to non-shared devices. This way, 
misclassification is avoided but at the expense of reducing the data availability and 
introducing sample coverage error (i.e. people sharing devices may be different from 
people not sharing devices). 

The second option is to add a “login dialog” to the meter; so, each time the user 
starts a browsing session (or the browser has been inactive for some time), a pop-up 
message asks about his/her identity. Theoretically, this solution ensures that each 
webpage visit recorded by the meter is attached to the right user. In practice, serious 
doubts arise on the reliability of this identification method. Ultimately, asking people 
about their identity while they use the internet may violate the passive nature of the 
data, producing: increased churn rate of the participants and misreported identities 
due to both lack of attention when using the login dialog and social desirability. One of 
the goals of collecting data passively is to observe people’s activity without affecting 
their behaviors; by adding a login dialog this benefit might vanish. 



 

 

Finally, some companies claim that they identify the user behind the device by 
analyzing his/her keyboard keystroke pattern. These companies do not disclose 
details on how this technique works and how well it performs, a fact that may cause 
distrust among researchers. Even if we accept this technique is truly effective, the 
rapid evolution of the browsing devices may challenge its further development: new 
touch keyboards, autocomplete features in the address bar of the browsers, voice 
typing, etc. On top of that, browsers are evolving towards greater control of which 
data is shared with third party applications; so, in the future, using metadata (such as 
keystroke data) might be problematic. 

Table I summarizes the pros and cons of each solution. 

Technique Pros Cons 
Avoid non-shared 
devices 

• Simplicity. 
• No misclassification errors. 

• It skips the problem, does not 
solve it. 

• Representativeness issue: lack 
of data from shared devices. 

• Valuable data is not used. 
Login dialog • It would be perfect… if users 

were perfect. 
• Easily applicable to more 

than two users. 

• It violates the passive nature 
of the data: people are 
constantly aware of being 
tracked. People may hide part 
of their navigation. 

• Users’ misuse (lack of 
attention when selectin the 
identity in the login dialog) 
may produce more harm than 
good. 

Analysis of the 
keyboard keystroke 
patterns 

• Non-intrusive. 
 

• Lack of transparency on how 
it works. 

• Challenged by devices’ 
interface evolution. 

Table I. Pros and cons of existing solutions to separate navigations. 

A new approach, like the one proposed in this paper, would enjoy clear advantages 
over the existing solutions: 

• Simplicity: separation is achieved by just inspecting the data. 
• Pure passive: panelists are not asked to provide information while navigating. 
• Robustness against future technological limitations that may restrict the 

possibility of collecting metadata. 

Lastly, a final thought about how these solutions might evolve in the future: new 
technical capabilities can make separation techniques not necessary. Passive facial 
recognition is a good candidate; Apple is the most recent technology company who is 



 

 

utilizing facial recognition to identify device users to unlock phones. Such system could 
be used to separate navigations. However, it may be perfectly possible as well that 
such information is not available for third party applications running on the device, as 
it is currently happening with other sensitive information. 

SECTION III. MAIN HYPOTHESIS 

To what extent is the way you browse the internet different from the way others do? 
This is the key question whose answer determines whether our approach makes sense 
or not. And, of course, our initial hypothesis is that the answer to this question is yes. 

A simple exploration of the data at hand (sample from the Behavioral Netquest Panel 
described in section I) helps to support this hypothesis (table 2). 

Sample size N 200 
Country Spain 
Type of device Non-shared PC or Tablet 
Time period 1 month (June 2016) 
For the whole sample… 
Sessions 77,842 
Visited webpages 1,259,076 
Visited domains 363,929 
Unique visited domains 17,309 
For each panelist average [ minimum – maximum] 
Sessions 389.2 [5 ↔ 1,345] 
Webpages per session 16.2 [1 ↔ 1,708] 
Domains per session 4.7 [1 ↔ 67] 
Unique visited domains in one month 175.2 [ 4 ↔ 915] 
For each couple of panelists… 
% shared domains 4.0% [0% ↔ 25%] 

Table 2. Dataset description. Data for panelists and couples of panelists is shown in the format 
“average [ minimum ↔ maximum]”. 

People in the sample visited 175.2 different domains on average in a month, ranging 
from 4 to 915. But the relevant fact to our purpose is that a pair of randomly chosen 
panelists from the sample only share 4% of their unique visited domains. 

This fact, that supports our hypothesis, could seem somehow surprising. It is well 
known that websites such as Google and Facebook capture most of the Internet traffic 
in the Western world. In fact, 98.5% of the panelists in the sample have visited Google 
while 86.0% have visited Facebook in the time period under analysis. However, that 
does not mean that people only browse such popular websites.  Figure 2 shows which 
percentage of the panelists have visited (at least once) each of the different domains 
that are present in the data. 



 

 

 

 

Figure 2. Popularity of each website among the sample. Just a few websites are visited by most 
of the panelists while a long tail of domains are visited by very few panelists. 

Figure 2 follows a typical Pareto distribution: just a few domains are visited by most of 
the panelists, while there is a long tail of less popular domains visited by a small part of 
the sample. Popular domains play a minor role to distinguish users; rare domains are 
the ones that can be crucial to achieve our goal. Our algorithm aims to exploit this 
opportunity. 

SECTION IV. THE ALGORITHM 

Choosing learning type 

Our purpose is to design a classification algorithm that gets as input the mixed 
navigation from two users (A and B) and returns each visited webpage properly 
labelled as belonging to user A or B. 

A first decision to be made in pursuing this goal is deciding what type of algorithm 
should be implemented. Machine Learning literature usually classify algorithms in 



 

 

three broad categories, depending on the way the algorithms learn: supervised, 
unsupervised and reinforcement learning algorithms. 

Reinforcement learning algorithms were rapidly discarded. Reinforcement is a 
powerful learning method, but such algorithms are “not given examples of optimal 
outputs (…) but must instead discover them by a process of trial and error” (Bishop, 
2006). This learning process requires a reward system: the algorithm needs to know if 
each step made contributes or not to a success metric. But unfortunately, our problem 
does not provide such rewards. 

On the other hand, supervised learning requires training data that “comprises 
examples of the input vectors along with their corresponding target vectors” (Bishop, 
2006). This is precisely what we lack; and what we have tried to replace with the 
artificial data described in section I. 

Supervised learning assumes that a causality relationship exists between some input 
factors and the classification criteria. Such learning offers some advantages compared 
to unsupervised learning. There are many and powerful supervised algorithms at hand 
that have proved to perform extremely well in a wide variety of problems (Kuhn and 
Johnson, 2013): Classifications Trees, Random Forest, Boosting, Support Vector 
Machines, etc. 

However, after a few attempts to train one of these algorithms, it soon became 
evident that it was not the right approach. It was pretty easy to train a supervised 
algorithm to separate the navigation from two particular individuals by using a specific 
training dataset from these individuals. But the result cannot be generalized to other 
pairs of individuals, a problem known as overfitting (Kuhn and Johnson, 2013). In other 
words, if we had data from two specific individuals correctly classified, we could train a 
specific model for them to classify their future navigation. But this model cannot be 
used for other individuals. 

One key learning from this unsuccessful attempt is the following: while each individual 
uses the internet in a unique way, it is not easy at all to predict which is this unique 
way based on personal characteristics.  

So, in light of the evidence, an unsupervised algorithm was the only option available. 
As explained by Bishop (2006), “In other pattern recognition problems, the training 
data consists of a set of input vectors x without any corresponding target values. The 
goal in such unsupervised learning problems may be to discover groups of similar 
examples within the data, where it is called clustering (…)”. That description fits 
perfectly with our problem: regardless of the factors that explain why people browse 
some websites rather than others, we just want to identify groups of “similar 
websites” in the hope that this will reveal the identity of the individuals behind. 



 

 

The solution: an ensemble of different algorithms 

A description of the unsupervised algorithm developed to separate navigations is 
provided below, step by step. All the data manipulations and algorithms have been 
programmed in R (www.r-project.org), using public libraries. 

To facilitate the reader’s comprehension, the description is backed with real examples. 

Step 1: Dimension reduction 

Navigation data consists of a list of complete URLs, each one formed by a domain 
name (e.g. amazon.com), sometimes a subdomain (e.g. aws.amazon.com, 
www.amazon.com) and a page descriptor (e.g. www.amazon.com/cell-phones-service-
plans-accessories/b/ref=nav_shopall_wi). 

We have decided to focus our analysis on domain names. For our purpose, all this 
information around the domain name (i.e. subdomains and page descriptors) adds 
much more complexity. As the whole idea behind the separation is to exploit 
coincidences in the same session, working with precise URLs would require much more 
data to train an algorithm.  

The same applies to multiple visits per domain. We could potentially separate two 
users visiting the same domain if one user tends to visit many pages in the same 
session and the other one just a few. But this information is much less relevant than 
the simple fact of whether a domain has been visited or not, so we decided to not use 
it. 

So finally, data is reduced to domain level: a complete navigation is transformed in a 
list of sessions (figure 3 – A), and each session is transformed into a list of unique 
domains visited in that session (figure 3 – B). Once the session is properly assigned to 
the right user, all the suppressed information around the domain can be recovered in 
order to assign webpage visits to each user. 

 

 

 

 

 

 

 

 

 

NAVIGATION 

 

T URL 
0 www.amazon.com/product1 
2 www.amazon.com/product2 
3 www.amazon.com/checkout 
45 www.facebook.com/login 
47 www.facebook.com/user 
48 www.youtube.com 
49 www.youtube.com/aabbcc 

 

SESSIONS 

Session 1 (from 0 to 3 min) 

URL 
www.amazon.com/product1 
www.amazon.com/product2 
www.amazon.com/checkout 

 

Session 2 (from 45 to 49 min) 

URL 
www.facebook.com/login 
www.facebook.com/myprofile 
www.youtube.com 
www.youtube.com/aabbcc 

 

SESSIONS AT DOMAIN LEVEL 

Session 1 (from 0 to 3 min) 

Domain 
amazon.com 

 

 

Session 2 (from 45 to 49 min) 

Domain 
facebook.com 
youtube.com 

 

A B 



 

 

 

Figure 3. Dimension reduction: navigation data is first grouped into sessions; then, URLs are 
reduced to unique domains per session. 

Step 2. Similarity matrix 

A similarity matrix is evaluated for the list of unique domains present in the navigation 
data. Each cell of this matrix contains a measure of how likely two domains appear 
together in a session, what is a sort of correlation. 

Several ways to create such matrix were tested, without relevant differences in the 
result. So, the following simple method was finally employed: 

(1) First, the browsing data for each couple of panelists is binary coded in a matrix 
M. This matrix has as many rows as sessions and as many columns as unique 
domains in the joint navigation. So, each row is a sequence of ones and zeros 
that represents whether each possible domain is present at each session 
(Figure 4). 

 

Figure 4. Matrix M binary codifies sessions and unique domains. 

(2) Once M is built, the similarity matrix S is calculated by means of a matrix 
product MTM. The similarity matrix S has the following properties: 

a. Each cell represents the similarity of a pair of domains. So, the matrix is 
symmetric. 

b. The minimum value of each cell is zero, that means that both domains 
never appear together in a browsing session (minimum similarity). 

c. The maximum value of each cell is the number of times both domains 
appear together in a browsing session. 

d. The diagonal of that matrix represents the similarity of each domain 
with itself. Because of the matrix M is computed, each diagonal cell 
equals the number of times each domain appears in the navigation. It 
can be removed as it does not provide useful information. 

Domains that appear together more frequently in the sessions will score high in the 
similarity matrix S. As we assume that sessions are owned by a single user, high 
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similarity indicates high likelihood of belonging to the same user. A visualization of 
such matrix is shown in figure 5 for a couple of individuals. 

Theoretically, the above procedure to create the similarity matrix has some drawbacks. 
For instance, domains that appear more often tend to score higher. In other words, the 
matrix is not normalized. For instance, say that a pair of domains A and B appear just 
two times in the navigation but always together, while another couple of domains C 
and D appear tens of times but only two times together. Both pairs A-B and C-D will 
get the same similarity score (2), while it seems clear that A-B are more similar than C-
D. 

Different strategies to overcome this alleged limitation were tested. Even though some 
of these strategies produced similarity matrices in greater accordance with what we 
may expect, none of them improved the final performance in the ultimate goal of the 
algorithm: correct separation of individual’s navigations.  

 

Figure 5. Visual representation of a similarity matrix of unique domains for a couple of 
individuals. Dark areas mean high similarity between domains; that is, domains that frequently 

appear together in the same sessions. 



 

 

Step 3. Multidimensional scaling 

The similarity matrix S tells which domains appear together more often and which 
ones do not. But we aim to combine this pair wise information to get a global picture. 
Could we spread the domains onto a plane, so the similar domains are placed together 
and the dissimilar ones are placed distant? If so, we could separate two groups of 
domains in the hope that each group belongs to a different individual. 

An intuition on how domains can be placed in a plane in such way is the following: 

(1) First, the similarity matrix S can be transformed into a distance matrix D by 
inverting each cell one by one (D=1/S). So instead of a measure of similarity, we 
get a measure of dissimilarity: the higher the value in a cell, the less likely two 
domains appear together in a session, the less likely they both belong to the 
same individual. 

(2) Place the first unique domain in the center of a plane. 
(3) Take the second domain and place it at a distance from the first one according 

to the information in the distance matrix D. 
(4) Things get more interesting with the next domains; if you try to proceed in a 

similar way as with the second domain, the distance with the first and the 
second domain must be considered at the same time. But both distances may 
be incompatible, so a compromise among different distances must be reached. 

(5) This process gets increasingly complex as more domains are placed in the plane 
because the coherence between pair wise distances gets harder. So, for 
instance, when placing the 6th domain, its distance with the 1st, 2nd, 3rd, 4th and 
5th domains must be balanced. 

Fortunately, this placement of domains in a physical space can be done using a well-
stablished algorithm, a Multidimensional Scaling (MDS; Young, 1987). An MDS 
algorithm aims to place several elements in a N-dimensional space such that the 
between-elements distances are preserved as well as possible. Each element is then 
assigned coordinates in each of the N dimensions. 

How a MDS works can be seen with a simple example. Consider the distances between 
nine American cities (table 3). 

 BOS CHI DC DEN LA MIA NY SEA SF 

BOS 0 963 429 1,949 2,979 1,504 206 2,976 3,095 

CHI 963 0 671 996 2,054 1,329 802 2,013 2,142 

DC 429 671 0 1,616 2,631 1,075 233 2,684 2,799 

DEN 1,949 996 1,616 0 1,059 2,037 1,771 1,307 1,235 

LA 2,979 2,054 2,631 1,059 0 2,687 2,786 1,131 379 

MIA 1,504 1,329 1,075 2,037 2,687 0 1,308 3,273 3,053 

NY 206 802 233 1,771 2,786 1,308 0 2,815 2,934 

SEA 2,976 2,013 2,684 1,307 1,131 3,273 2,815 0 808 

SF 3,095 2,142 2,799 1,235 379 3,053 2,934 808 0 



 

 

Table 3. Distance between nine US cities. 

Running a MDS on this data, a pair of coordinates is assigned to each city. Once 
represented in a graph, the position assigned to each city approximately reproduces 
the shape of the US map (figure 4). In other words, the best representation on a 2-
dimensional space of the distances between cities is the United States of America. 

 

Figure 4. The MDS procedure locates the cities in a plane in a way that between-cities distance 
is preserved as much as possible. This results in the real relative location of each city. 

The same MDS procedure can be applied to the between-domains distance matrix D. 
As we want to identify just two groups of domains, we can use a 1-dimensional plane 
(N=1), that is, a simple line. If the hypothesis supporting this work is valid, domains 
that are visited only by user A should be placed at one end of the line, while domains 
visited only by user B should be placed at the opposite end of the line. Domains that 
are visited by both users should be placed in the half-way. 

Considering the midpoint of the line (coordinate x=0) as the threshold to separate both 
users, the distance to this midpoint can be considered a propensity score. Domains 
with large scores (positive or negative) are highly likely to be visited by only one of two 
users; these are highly discriminant domains. On the contrary, domains with scores 
close to zero are likely to be shared between both users and therefore, non-
discriminant. 

Figure 7 shows an example of the resultant scores for a couple of users. 



 

 

 

 

Figure 7. Propensity scores of a pair of users. Large scores are associated to discriminant 
domains (blue and orange), while small scores (grey) to non-discriminant ones. 

Step 4. Classification of sessions 

Up to step 3 we have found a first classification criterion at domain level: positive 
scores are assigned to user A and negative ones to user B. However, this criterion is 
too extreme: even close-to-zero score domains (non-discriminant) are assigned the 
same way than large score domains are. For instance, according to the data shown in 
figure 7, the domain google.com (score +0.25) should be assigned always to user A, 
while it is likely that both users visit google.com. 

The accuracy can be improved by computing average scores per session. For instance, 
consider a session with four domains (facebook.com, gmail.com, mysocialme.com and 
republica.com) with respective scores -1.28, -1.5, -1.33 and 0.34. Consider also that 
positive scores are assigned to user A and negative ones to user B. When assigned at 



 

 

domain level, facebook.com, gmail.com and mysocialme.com are assigned to B and 
republica.com to A. But if we evaluate the average score of the session (-0.9), the four 
domains are assigned to B (see Figure 8). 

This procedure allows to assign non-discriminant domains more accurately, taking 
advantage of the fact that they are part of a session that may include discriminant 
domains. The larger a session is, the more effective is this method. 

Of course, short sessions with non-discriminant domains are more likely to be 
misclassified. Fortunately, short sessions impact much less in the global accuracy. 

 

 

Figure 8. When considered at domain level, each domain is assigned based on its score, even 
those with small scores. When considered at session level, all four domains are assigned 

together. In this case, republica.com is assigned to user B (orange) despite its score is positive. 

Step 5. Who is the panelist? 

One final step is missing. Up to step number 4 we have separated domains in two 
groups, A (positive scores) and B (negative scores). But, who is the user we are 
interested in? 

If we certainly know that the user we are interested in (target user) visits a particular 
discriminant domain, this is enough to decide. We call this domain, the one that is 
visited exclusively by the target user, the hook. If the hook is positive, the target user is 
A, otherwise is B. 

But, how can we get such domain from the target user? Fortunately, when installing 
the meter in an online panel such as Netquest, a hook is always available: the domain 
of the panel website, the one accessed when the panelist participates in surveys. As 
such domain is only visited by the target user, is the perfect hook. 

And what about if both users sharing a browsing device are members of the panel? 
Theoretically, both users would visit the panel domain and it would no longer be a 
hook. However, we can benefit from the fact that panelists need to log in the panel 
website to participate in surveys. When users log in into a website, the URL changes 
specifically for each user, so we can still use the panel domain as a hook; or more 



 

 

precisely, two slightly different versions of the panel domain. For instance, the domain 
nicequest.com becomes “nicequest.com/userA” for user A, and 
“nicequest.com/userB” for user B. So, in fact, when both users are panelists, we have 
two different hooks at our disposal; that makes the user identification even more 
reliable. 

 

Figure 9. The sign of the hook’s score determines whether the target user is A or B. In this 
example, the hook (nicequest.com) determines that the target user is B (the one with 

negative scores). 

SECTION V. PERFORMANCE 

In order to assess how well this algorithm performs, a success metric must be defined. 
Several options are available: 

- Session accuracy: the percentage of sessions (as defined in section I) assigned 
to the right user.  



 

 

- Domain accuracy: the percentage of unique domains per session assigned to 
the right user. This metric can be applied directly to the data once the 
dimension reduction is applied (see section IV, step 2). 

- URL accuracy: Each domain in the dataset corresponds to several URLs 
(different webpages from the same domain that the user visits in the same 
session). Once the domains are classified, the underlying URLs are implicitly 
classified, resulting in the URL accuracy metric. URL accuracy may differ from 
domain accuracy only if (1) some domains receive more page visits than others 
and (2) these domains have a significant different accuracy. 

We have computed all the above metrics, but we have used the domain accuracy as 
the key success metric, the one used to compare algorithms’ performance.  

Table 4 shows the different resultant metrics for our dataset. 

Success metric Average 
Session accuracy 84.0% 
Domain accuracy 87.3% 
URL accuracy 87.5% 

Table 4. Performance of the algorithm (different metrics) 

A naïve classifier (that is, assigning domains randomly to each user) may reach a 50% 
domain accuracy, so this is the base accuracy we aim to improve. Considering this fact, 
87.3% domain accuracy should be considered a promising result. 

Note that the domain accuracy is greater than the session accuracy (87.3% vs 84.0%). 
This is due to the fact (explained in section IV, step 4) that larger sessions tend to be 
better classified. URL accuracy, on the contrary, is pretty similar to domain accuracy, 
meaning that domains that receive more webpage visits are not better classified. 

Figure 10 shows the accuracy for each pair of users in the dataset, ordered by 
accuracy. It is interesting to note that the average accuracy (87.3%) is not the result of 
a homogenous performance among all the cases; on the contrary, the algorithm seems 
to work very well (accuracy > 85%) for a near 75% of the cases, while dramatically fails 
in some cases. In these cases, the algorithm performs even worse than a naïve random 
classification algorithm. 

 



 

 

 

Figure 10. The overall accuracy is a mix of many well classified cases and a few very bad 
classified ones. If we order the 1,000 cases, most of them perform between 90% and 100% but 

some perform lower than 50%. 

Looking at these problematic cases some insights are revealed: 

• In some cases, the hook has been mistakenly classified. The result of this 
misclassification is harmful: the accuracy goes towards zero (in fact, towards 1 
minus the accuracy that should be achieved if the hook were properly 
classified). A hook misclassification may occur when (1) the panelist has visited 
the panel website very few times (e.g. he/she has participated in few surveys) 
and (2) those visits have occurred in very short sessions. 

• Some particular cases were found in which the pair of mixed navigations 
seemed to be produced by three different users instead of two. This fact can be 
easily visualized by executing the MDS algorithm using two dimensions (a 
plane) instead of one (a line). Figure 11 shows one of these cases. When doing 
so, domains are displayed in three different areas that can be easily separated. 
A possible explanation is that although we are producing the artificial dataset 
by combining navigations from devices that are allegedly not shared, some of 
them are actually shared. Some users may have reported misleading 
information in the installation survey regarding the shared condition of their 



 

 

devices, or this condition has changed after some time. In fact, this finding 
reinforces the approach we have taken: relying more in the data that in 
declared information. 

 

Figure 11. An example of a particular case in the dataset that may be produced by three users 
instead of two. A 2-dimensional MDS allows to visualize three different regions in the domain 

space. 

SECTION VI. FURTHER RESEARCH AND APPLICABILITY 

Our research has been tested on artificial data, as detailed in section I. Despite results 
are promising, an objection could be made on the fact that we have not tested the 
algorithm on navigations coming from a real shared device. If people sharing a device 
navigate in a much more similar way, the main hypothesis that supports this work 
would be seriously compromised. 

A real validation dataset from shared devices would be needed. But we should not 
underestimate how difficult to obtain one is: whenever we ask people to identify 
themselves when browsing, we will risk suffering a serious bias as mentioned in 
section II. 

However, even if the algorithm performs worse than expected in real shared devices, it 
can still be improved to boost the accuracy. The following two techniques deserve 
further research: 



 

 

• Instead of working at domain level in general, some non-discriminant domains 
could be split in subdomains. For instance, “facebook.com” would be a non-
discriminant domain if both users visit Facebook. But considering 
”facebook.com/userA” and ”facebook.com/userB” as different domains, a non-
discriminant domain is transformed into two highly discriminant ones. It is the 
same strategy suggested to split hooks when two panelists share a domain 
(section IV, step 5). By applying similar preprocessing techniques to some 
popular domains, accuracy can be improved. 

• Panelists could be asked to provide some additional information on how they 
browse the internet to improve the algorithm. Questions such as “Could you 
provide us some websites you usually visit that nobody else at your home 
does?” would improve accuracy and prevent a wrong identification of the hook. 
An alternative approach is to ask the user to identify herself in some initial 
browsing sessions. Although the user may alter the way he/she navigates in 
that session (e.g. avoiding sensible websites), the collected data could be 
enough to better train the algorithm. If people are required to identify their 
browsing sessions occasionally, for calibrating the algorithm, the passive nature 
of the data would not be compromised and churn rate would be limited. 

Beyond its performance, the algorithm offers several advantages that facilitate its 
usage in production environments, compared to existing solutions. 

• It is simple. It can be easily programmed in almost any programming language. 
• It does not need to be executed in real time. In fact, it can be executed 

whenever it is needed, as it only requires (as input) the same data that is going 
to be processed. The only requirement is to have enough data stored to 
properly assign each domain to each user. 

• The performance of the algorithm improves over time. The longer the period of 
time under analysis, the better the detection of similarities among domains and 
the better the accuracy. However, a limit should be set up to account for the 
possibility that users change their navigation habits. This topic requires further 
research. 

CONCLUSIONS 

We have shown that the way people use the internet is a personal trait that, in fact, 
should be considered as Personal Identifiable Information (PII). We can benefit from 
this fact to separate navigations of two or more users that are sharing the same 
metered browsing device. 

To prove this concept, we have developed an algorithm that exploits the correlation 
among domains in browsing sessions. The algorithm was tested on a dataset created 
for this purpose, by mixing navigations of members of a Behavioral Panel (Netquest). 



 

 

We have reached 87.3% of accuracy in identifying website visits and 87.5% in 
identifying URLs visits. 

This result opens a new line of research. There is plenty of room for improvement, as 
was presented in this paper. 

Finally, we hope this work launches a debate about how we, as researchers, should 
approach new methodologies and data sources. The method we have explored to 
separate navigations is not perfect: some web visits, particularly those that are part of 
short browsing sessions, may be misclassified. This fact may cause discomfort in some 
researchers that prefer to work with the apparent certainty that self-reported data 
provides. 

Despite self-reported data on online behaviors may be severely distorted, it is a safe 
place for researchers: if data makes no sense, just blame the online panel for not being 
able to recruit honest participants, without bearing in mind that is impossible to be 
honest when asked to report short and repetitive interactions that are repeated many 
times a day. 

Behavioral data follows what may be called the “Heisenberg’s uncertainty principle on 
behavioral data”. Just like the original Heisenberg's principle stated that some pairs of 
physical properties cannot be known with unlimited precision, a perfect knowledge on 
online behaviors cannot be reached, while knowing all the surrounding circumstances 
without uncertainty. To know the latter, we need to ask. When asking, we alter 
behaviors and data is not passive anymore. New methods as the one presented in this 
paper offers a way to reduce the uncertainty around the behavioral data, without 
seeking to eliminate it completely. 

Working with new types of data means taking risks; it means working with imperfect 
datasets, far away from the simplicity of survey data. 
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